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Abstract. This work is concerned with the behaviour of fluctuations in a binary mixture 
which is in a non-equiiibrium steady state (NESS), produced by a temperature gradient. 
Fluctuating hydrodynamics lead us lo a resonant coupling between the viscous and the 
heat modes in the system. The Rayleigh peak shows an anomalous behaviour arising from 
this coupling. A shift in the Brillouin peaks also appears but its magnitude is too small to 
be observable. 

1. Introduction 

The behaviour of fluctuations in thermodynamic systems which are in a non-equilibrium 
steady state (NESS) has been the subject of several theoretical and experimental studies 
[l,  21. It is known that a system in a NESS presents long-range correlations produced 
by the effects of extra couplings between the hydrodynamic modes, which are absent 

in these systems is the asymmetry of the Brillouin peaks, which has been confirmed 
experimentally. The Rayleigh peak [3-51 also has an interesting behaviour produced 
by a coupling between the shear and the heat mode in a simple system in an external 
temperature gradient. In fact, there is an enhancement proportional to k-4(V T ) : ,  
which has also been measured recently [6,7]. Here we are interested in the study of 
a &nary z k t n r e  in an externa! !emperatore gradient in order!a sec ifa simi!zr bchzviocr 
exists [8]. 

The starting point of our study will he the usual fluctuating hydrodynamics for the 
mixture [9, 101. The ensuing equations will he linearized around the steady state to 
calculate the dynamic structure factor [ l l ,  121. This procedure gives us several impor- 
tant features concerning the behaviour of the system. First of all a concentration 
gradient appears which is proportional to the temperature gradient and the thermal 
diffusion coefficient. Secondly the Rayleigh peak presents an enhancement of the same 
structure as in the simple fluid. This effect appears because there exists a coupling 
between transverse viscous modes and the temperature gradient, but there is also an 
extra term which comes from the coupling between the fluctuating diffusion flux and 
the temperature gradient, which is proportional to k-*(VT);  and represents a new 
effect in the mixture. Because of its dependence on the wavevector, the transport 
coefficients and some thermodyanmic quantities, this term is negligible. The fluctuation 
calculations in this paper are based on the fluctuations of density, and the simplification 

in an eqiuifibiiiiiii state. =tie of ihe iiios: s:iikiiig fea:n;es of:he !iph:-sca::e;ing ;pec:;a 

of constant pressure, as occurs in the literature [8], was not needed. 

t Also at El Colegio Nacional. 
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The paper is organized as follows. In section 2 we discuss the basic equations of 
fluctuating hydrodynamics for a binary mixture. In section 3 this set of equations is 
linearized around the steady state, a procedure resulting in an equation for the density 
in the wavelength-frequency representation, which clearly exhibits the different contri- 
butions to the density fluctuations. In section 4 we compute the dynamic structure 
factor and study its main features under conditions which are easily comparable with 
experimental results. Lastly we compare our calculation with the constant pressure 
approximation. Care is taken in pointing out the salient aspects of our work not taken 
into account in other treatments as well as comparison with other well-established 
results. 

2. Basic equations 

Our starting point to study the fluctuations in NESS will be the usual fluctuating 
hydrodynamics for a binary mixture. This means that we write the balance equations 
for the total density of the mixture p. the concentration c, the hydrodynamic velocity 
U and the local entropy s, namely, 

*+ v 'p" = 0 
a t  

J 
d f  
- pu+v .pvu = -vp -v .  U 

where p is the hydrostatic pressure, U is the viscous tensor, T is the local temperature, 
J, is the heat flux, p = p , / m ,  - p 2 / m 2  is the chemical potential for the mixture, J is 
the diffusion flux and ( )" denotes a symmetric traceless tensor. 

The balance equations are completed with the usual constitutive equations for the 
fluxes in the system [13], namely, 

(2.6) 

(2.7) 

where the transport coefficients are the shear viscosity 7, the bulk viscosity 5, the 
thermal conductivity A,  the diffusion coefficient D, the thermodiffusion ratio kT and 
the barodiffusion k,, = p ( ~ p / ~ p ) , , ( a ~ / ~ c ) ~ ~ , ~ .  

As a second step, the set of equations are solved for the steady state given by a 
fixed temperature gradient. The solution has the following characteristics: 

(i) the steady state temperature is Tss= To+r.(VT),; 
(ii) the pressure turns out to be constant in the steady state and the hydrodynamic 

k kT J,  - p J  = -AV T -pD(kTp,  - T p T ) ( I  V p + r  V T+Vc 
P 

U = - 2 a ( V u ) ~ - ~ ( V .  U)[ 

velocity is zero; 
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(iii) the diffusion flux in the steady state J,, = 0, implying that there is a concentra- 
tion gradient in the system, coupled with the temperature gradient and given by 

(2.8) 

(iv) the density, chemical potential and entropy gradients are related to the tem- 
perature gradient by means of the corresponding equations of state and the condition 
(U), namely, 

k r  
T 

( V c ) , =  -- ( V T ) ,  

(vP)O=-pO YT+- ( V T ) o  ( k3 
(2.9) 

( V P ) o =  (PLT -+T)" krpC 

( V S ) O = - ( C ~ + L L T ~ T ) ( V T ) O  

Here we have defined the following quantities: 

1 
T 

Let us now denote by j ,  q,  and T the fluctuating parts of the fluxes in equations 
(2.5)-(2.7). In the third step we assume that their direct and cross-correlation functions 
are Gaussian delta-correlated noises, with their correlation functions given by [9, 101 

(TJr ,  t ) T d r ' f ' ) )  

= ~ K B  T [ v ( ~ , &  + &,a,,) + (4" - h ) 8 $ , m 1 8 ( r  - r ' )a ( t  - 1') (2.10) 

(2.11) POD ( j l ( r ,  1 )  j m (  r', t ' ) )  = 2K, T - 6,,,,8(r - r ' )8 (  f - 1') 
Pc 

( q d r ,  O q d r ' ,  1 ' ) )  

= 2 K , T  TA +-- (krpc - Tp,)')S,S(r- r ' ) 8 ( t  - 1') ( (2.12) 

(2.13) 

(TAr ,  f)j , , ,(r ' ,  f ' ) ) = ( T , d r ,  t ) q l m ( r ' ,  f ' ) ) = O .  (2.14) 
The correlation functions written above are the same as in  equilibrium. This is a 

hypothesis commonly made [ I ]  and it is based on the fact that the correlation length 
of the fluxes is very small, so they do not feel the influence of the fixed external 
gradient. The above correlation functions are needed in the wavevector space, thus 
implying that the temperature to be taken in the fluctuation dissipation theorem will 
be an average temperature, as is usually done [3, E]. 

P O D  
( j d r ,  t )qIm ( r ' ,  f ')) = 2& T - ( k r A  - T ~ ~ ~ ) f i i d  ( r - r ' )  a( f - t ' )  

LL' 

3. Linearized equations 

The set of equations established in the last section are now ready to be linearized 
around the steady state. In this process the temperature gradient and the quantities 
proportional to it are considered to be of zeroth order in the fluctuations. Following 
standard procedures and straightforward steps to take the Fourier transforms of the 
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ensuing linearized equations and separating the transverse u'(k, o) and the longitudinal 
6'(k, w )  parts of the velocity, we obtain a set of equations given as iollows, 
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where U, = 7 / p o .  U, = l/p,($7 + c), k  ̂ is the unitary wavevector, and k =  lkl, the wave- 
vector magnitude. 

To simplify the calculations we have taken the case in whith the temperature 
gradient and the wavevector are perpendicular to each other, so kO(VT),=O. 

The transverse part of the velocity is decoupled as shown in equation (3.4), and it 
is easiiy eiiminated irom ihe set o i  equations. Notice iurther that the terms in which 
the transverse mode appears are coupled with the gradients in the steady state, and 
they will carry the contribution of the temperature and concentration gradients tn the 
structure factor. 

The linearized equations are then written in matrix form, 

M(k, w ) A ( k ,  w )  F(k3 w )  ( 3 , h )  

where A(k, o) represents a column matrix containing the fluctuations of hydrodynamic 
variab!es, 

A,=$(k,w) A,= f ( k , o )  A, = E(k, o) (A,= ii'(k, o) (3.7) 

and F(k; U )  contains the fluctuating fluxes 

1 .  t (iko T (  k, U)).( 1 - ii) ~ ( v c ) ,  

Po po(iw + u,k2) 
F2(k, o )=- ikol (k ,  w ) -  

(3.8) 

(3.9) 

ik A -  

Po 
F,(k, o )=-kk: r (k ,  w )  (3.10) 
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where M(k, w) is the hydrodynamic matrix, given by 

1011 

ik M --- 
YT Y r  YT 

Yr . 
M 1 2 = - i w  M,,=--lw 14 - Yn . M,,=-Iw 

M2,=- DkT k2 MZ3 = (iw + Dkz) M2, = 0 
Dk M,, =- k2 P T 

M, = (io + yk2)  
ik 
PO 

M,, = -- M32 = 0 M,, = 0 

ik 
M4=--. 

Yr 
(3.12) 

In or r to calculate the structure factor. we solve st set of equations for the 
longitudinal part of the velocity and substitute it in the equation for the density given 
in (3.1), to obtain 

where (p/p0)., are the fluctuations around the equilibrium state. Here A, E,  E and A 
are some functions of the wavevector and the frequency which we avoid writing here. 
Their full form is given in the appendix. 

Equation (3.13) shows in a clear way that the density fluctuations have three different 
contributions, one coming from the equilibrium fluctuations, the second one coming 
from the coupling with the transverse part of the velocity and the last one coming 
from the coupling of the fluctuating diffusion flux and the gradient of the chemical 
potential in the steady state, which can be expressed in terms of the temperature 
gradient. This last term has been systematically ignored in previous studies of this 
problem '[8]. 

4. Structure factor 

The calculation of the structure factor is now straightforward. We call Se, and S, the 
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equilibrium and the steady-state structure factors, respectively, so that 
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We cotice that the sce-a!ecs pir! ofthe structure facter has two main coneib~:lons, 
one of them coming from the coupling between the tranverse mode and the temperature 
gradient, and the last one arises from the coupling between the fluctuating part of the 
diffusion flux and the temperature gradient. 

To better understand this result, we calculate the Rayleigh peak taking the leading 
terms of equation (4.1) in the poles [I21 -D,k2 and -D;k2, where 

2 0 ,  = x +D -[(x +D)2-4~D] ' i i  

2D>= x + D + [  (x + D ) ' - ~ X D ] ' ' ~  

where D=D(l+(k&,/Tcp)j .  
The result for the structure factor in its full form is given in the appendix, where 

we have included the Brillouin peak contribution. 
The analysis of some special cases I s  particularly illuminating. First of all we 

consider the case where the binary mixture is a diluted one, the thermodiffusion 
coefficient is negligible, k, + 0, but the diffusion and the diffusivity ,y = h/p,C,, remain 
finite. 

The Lorentzian widths simplify, so D, becomes the diffusion coefficient 0, D ;  
reduces to the thermal diffusivity x. the concentration gradient disappears and the 
density and chemicai potentiai gradients simpiify to (Vpjo = -poyT(v I jO and ( V P ) ~  = 
p,(VT),,, respectively, so that the Rayleigh peak is given by 

,... -~ 

(4.3) 

The first term in equation (4.3) coincides with the results of Ronis [3] for a simple 
fluid, but the second one is present only because our system is a binary mixture. I t  
can be traced back to the coupling between the gradient of the chemical potential in 
the steady state with the fluctuating part of the diffusion vector. The new term which 
corrects the 1/ k4-dependent coupling between the transverse viscous mode and the 
external gradient depends on  the diffusion in  the mixture and has a l / k 2  dependence 
but, for a mixture of benzene and carbon tetrachloride, is several orders of magnitude 
smaller than the tirst one, so we neglect it. 

Lastly, we calculate the integrated intensity of the anomalous Rayleigh part of the 
spectra, which is given by 

(4.4) 

Equation (4.4) also shows the characteristics we mentioned about the structure 
factor, i.e. the square gradient and the l / k 4  dependence on the wavevector. 

The calculation of the Rayleigh peak carried out here can be simplified if we d o  
it at constant pressure. This simplification comes from the fact that the pressure 
fluctuations do  not affect the temperature and concentration fluctuations, but do have 
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an influence on the Brillouin peaks. The calculation we have done using the density 
fluctuations seems to be more dificult, but in fact it is not, due to the particular way 
in which the temperature gradient is coupled. The calculation shows that the main 
contribution to the Rayleigh peak is indeed produced by temperature fluctuations. 

This fact can be shown explicitly by calculating the temperature and concentration 
fluctuations at constant pressure. The leading terms in the Rayleigh peak are then 
given by 

(w)l-(f?*)eq 

which in the limiting case of negligible thermal diffusion, k, + 0, simplifies to equation 
(4.3) as was expected. 

The concentration correlations are given by 

(E*), -(z*)eq 

and the cross-correlations are 

The correlations involving the concentration reduce to zero when the thermal 
diffusion vanishes. 

On the other hand, according to equation (3.13), where we have the density 
fluctuations we can also calculate the contribution of the Brillouin peaks. This is readily 
done by taking the leading terms in the poles +ic,k -Tk2, where c, is the Laplace 
sound speed and T the sound absorption coefficient in the binary mixture. In  fact, the 
Brillouin peaks have an anomalous contribution due to the coupling of the fluctuating 
part of the diffusion flux with the chemical potential in the stationary state. It can be 
written as 
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It should be noticed that we are considering the case where the temperature gradient 
and the wavevector are perpendicular. This means that we cannot obtain the asymmetry 
of Brillouin peaks, but instead we have a resonant coupling between diffusion fluctu- 
ations and the external gradient. This contribution is not present for a simple fluid, 
and for the mixture it is in fact very small. 

To compare with some papers in the literature, we must say that a similar calculation 
was done by the Maryland group [E]. They also started with the fluctuating hydrody- 
namics equations, bui their sei is somewhai diiiereni to ours producing a siighiiy 
modified result. Let us try to explain the difference. The construction of fluctuating 
hydrodynamics equations begins with the balance equations completed with the usual 
constitutive relationships. Thereafter those equations become stochastic by adding the 
fluctuating parts of the fluxes, characterized as Gaussian white noises. The next step 
is the linearization of the set around the steady state. It seems that we agree in all 

coming from the product of the fluctuating diffusion flux and the external gradient of 
the chemical potential. Clearly, this term must be considered because it is linear in 
the fluctuations and of zeroth order in the steady-state quantities. It is precisely this 
contribution which makes the difference in the equations and accounts forthe additional 
terms in the structure factor. 

In the literature [8] mention has been made of the fact that the enhancement 
produced by the resonant viscoheat coupling is found to increase the Rayleigh peak 
about 60 times for a 0.5 fraction mixture of benzene and carbon tetrachloride with a 
scattering vector of 2000 cm-' and 100 K cm-' for the temperature gradient. The 
additional term derived here, namely the second term within brackets in equation (4.3). 
was evaluated using the available experimental values for the transport coefficients 

approximations, one finds that its value is several orders of magnitude smaller than 
the u,k2 Contribution so that it may he completely neglected. 

In spite of this outcome, our calculation allowed us to obtain an expression for 
the density fluctuations and study the contribution of temperature fluctuations, when 
we take the constant pressure approximation to understand the difference in the two 
approaches mentioned above, AIso, the density fluctuations show that the behaviour 
of the Brillouin peaks confirms that they are not affected by the viscoheat resonant 
coupling, a result that, although expected, had not been clearly pointed out in previous 
treatments of the problem. 

steps jo  far, in entropy baLanie eq i ia~ ,o~ ,  in .%hi& Bii ieir, 

invnlved !here, zssllming !hat the mix!nre is idea!, A!!hO& we have used crude 
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Appendix 

In this appendix we give the definitions of the functions we used in the calculation of 
density fluctuations: 

1 A ( k , w ) = -  ik'[ iw- Dk,( h k;;) -,y(iw+Dk2) 
P O  T Y r  
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The full form for the structure factor is given by 

+(two similar terms which are obtained changing D, by D;) 

A(k, w )  is the determinant of the hydrodynamic matrix given in equation (3.12). 
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